Low Complexity Network Synchronization*

Lior Shabtay and Adrian Segall

Dept. of Compnter Science, Technion, Tsrael Tnstitute of Technology
Haifa, Israel 32000
email : liors@cs.technion.ac.il, segall@cs.technion.ac.il

Abstract. Synchronizer v is the best synchronizer known that works
with any type of synchronous model and any network topology. This pa-
per presents three new synchronizers: 1, 72 and 6. These synchronizers
use sparse covers in order to operate and have the following advantages
over synchronizer v: (1) they are conceptually simpler, as only one con-
vergecast and one broadcast processes are performed along each cluster
spanning-tree between each two cansecntive pulses, and no preferred links
are needed for inter-cluster communication. (2) synchronizer 7, uses half
the communication complexity of synchronizer v, while retaining the
time complexity. (3) synchronizer # uses half the time complexity of
synchronizer v, while retaining the communication complexity. (4) since
there is no need to elect preferred links between neighboring clusters, the
initialization process of these synchronizers is more efficient: it requires
only O(|V]log |V| + | E|) messages.

Key words: distributed algorithms, networks, synchronization, sparse covers,
communication and time complexities.

1 Introduction

This paper deals with distributed protocols in two network models: the syn-
chronous model and the asynchronous model. In the asynchronous model, nodes
perform operations only upon receiving a message from some neighbor or from
the outside world. At that time, the node processes the message, performs local
computations, and may send messages to some or all of its neighbors. All local
actions are performed atomically. Messages sent by a node to any of its neighbors
are received in a FIFO order within a finite undelermined time.

The synchronous model assumes that all link delays are bounded by some
quantity referred to as a time unit. Pulses are generated synchronously at all
nodes in the network at time unit intervals. Messages are sent, only at pulse ticks,
and thus arrive at the destination node before the next pulse. Operations are
performed by a node only at the time of a pulse or when receiving a message.
When a node receives a message, 1t processes the message and performs local
computations. At the time of a pulse, the node may perform local computations

* Also to be presented on the workshop on distributed algorithms, 1994

and in addition, it may send messages to some or all of its neighbors. All local
actions are performed atomically.

Synchronizers are tools for transforming protocols written for the synchronous
model into protocols that run on an asynchronous network. The synchronous
protocol will be referred to as the original protocol. The asynchronous protocol
created by the synchronizer generates a sequence of pulses at each node. The
pulses occur asynchronously at different nodes. At each pulse, the nodes per-
form the original-protocol pulse code and send messages which are identical to
the original-protocol messages. In certain circumstances, slight changes in the
pulse code and/or in messages are allowed (see [16]).

The methodology of synchronizers was introduced in [1], where three synchro-
nizers were presented: the a synchronizer, with an overhead of O(]E|) in commu-
nication complexity and O(1) in time complexity per pulse, the 8 synchronizer
with an overhead of O(]V]) in communication and O(D) in time complexity per
pulse (when D is the diameter of the network), and the 7 synchronizer, which
enables trade-off between the above complexities.

In [1], it is shown that synchronizer v achieves almost optimal tradeoff be-
tween the time and communication complexities. This is proved by showing lower
bounds of 2(log; |V|) time and £22(k|V]) communication on this tradeoff, given
2 < k < |V]. Later works have presented synchronizers with lower complexities
designated for special cases: [15] shows an optimal synchronizer for hypercube
networks; [5] presents a synchronizer with polylogarithmic overhead that works
only for synchronous protocols in which a node may send messages at a pulse
only if it has received messages sent at the former one; [10] discuss synchronizers
for bounded-dclay networks. Thus, synchronizer 4 remains the best synchronizer
that works for any synchronous protocol and any asynchronous network.

In [15], the authors suggest a technique for crecating synchronizers by using
graph spanners. given a t-spanner with m edges for a network N = (V,), the
time complexity of the created synchronizer is ¢ and its communication com-
plexity is ¢ x m. In [9] and [4] O(log, |V|)-spanners with O(k|V|) edges are
presented, arguing that they can be used in order to create an efficient synchro-
nizer. However, the communication complexity of the created synchronizers is
O(k|V]log |V]), that is, O(log; |V]) times larger than that of synchronizer ~.

In a protocol created by combining a synchronous protocol with a synchro-
nizer, a node i is said to be safe with respect to pulse(n), if all original-protocol
messages sent by node 7 when performing pulse(n) have already been received
by the respective neighbors. In order for the node to know when they are safe,
each node that receives an original-protocol message is required to send back an
explicit acknowledgment message. Most synchronizers are based on the obser-
vation that a node ¢ can perform pulse(n) when all its neighbors are sale with
respect to pulse(n — 1).

Given a parameter k, the partition algorithm that initializes 7 creates a
partition of the network into clusters with cluster spanning-trees of hight H, =
log;, |V| at the most. The partition algorithm also elects a preferred link between
each two neighboring clusters. The number of preferred links adds up to (k—1)|V|

at the most. The time complexity of the partition algorithm is O(|V|log, [V]),
its communication complexity is O(k|V|?).

In order to synchronize each pulse, v uses the following protocol: after the
pulse is performed by the nodes, SAFE messages are converged along the cluster
spanning-trees from the leaves to the leader node of each cluster. Then, CLUS-
TER_SAFE messages are broadcast on the edges and preferred links of each
cluster tree. Then, CLUSTER_READY messages are converged along each clus-
ter tree, and AWAKE messages are broadcast along each tree in order to trigger
the next pulse at the nodes.

The time complexity of v is 4log, |V| 4+ 1 per pulse. This is due to the
fact that between each two consecutive pulses, two convergecast processes and
two broadcast processes are performed along each of the cluster spanning-trees,
and that messages are also sent along the preferred links. The communication
complexity of v is 4(|V|—1)42(k — 1)|V| messages per pulse, since between each
two consecutive pulses, four messages are sent along each cluster spanning-tree
edge and two messages are sent along each preferred link.

In this paper we present three new synchronizers, named 7y, 12, and 4. These
synchronizers make use of a sparse cover [14] [6]. which is a collection of clusters
such that each node is a member of at least one cluster (see Sec. 2). The initial-
ization of these synchronizers is based on a cover creation algorithm presented
in [14]. When given a parameter 2 < k < |V, this initialization algorithm cre-
ates clusters of radius O(log;, |V]), such that the average number of clusters each
node participates in is k.

Synchronizers 77, 72 and @ are conceptually simpler than synchronizer y:
between each two consecutive pulses, they use only one convergecast of SAFE
messages and one broadcast of AWAKE messages along each cluster spanning-
tree. No preferred links are needed for inter-cluster communication.

The fact that no preferred links should be elected enables the initialization
process of 71, 52 and 6 be more efficient than the initialization process of 7.
The communication complexity of a straightforward distributed implementation
of the GV algorithm that is used for initializing synchronizers 7y, 12, and 8 1s
O(|V|?), while the communication complexity of the partition algorithm that
initializes v is O(k|V|?). Furthermore, in this paper we also present an improved
version of the distributed GV algorithm, with communication complexity of
O(|V]log, |V| + |£]). The time complexity of the initialization algorithms dis-
cussed above is identical, namely O(|V]log; [V]).

The time complexity of synchronizer 5y is 4log, |V| + 2 per pulse, and its
communication complexity is 2k|V| per pulse. Both complexities are identical to
those of synchronizer 4. The time complexity of synchronizer 7, is 4log;, |V|+ 1
per pulse, the same as the time complexity of synchronizer . The communica-
tion complexity of s is (k + 2)|V| per pulse, which is half the communication
complexity of 4. The time complexity of synchronizer @ is 2log,. |V |+2 per pulse,
which 1s half the time complexity of 4. The communication complexities of 4 and
@ are identical.

2 Covers

In a network N = (V. E), a cluster is defined as a set of nodes S C V, such that
the graph induced by S (the nodes of S and the edges that connect them) is

connected. A cover [6] of a network is a collection of clusters 8 = {51, 55, ..., S, }
such that (J;¢; ,, Si = [V]. An example for such a cover is the set of |V| clusters
{51,592, ..., S’|V|} where the cluster S, contains the node v and all its neighbors.

Let S be a cluster and v,w € S two nodes in the cluster, distg(v,w) is
defined as the length of the shortest path in S between v and w. The diame-
ter of a cluster S, Diam(S), is defined as max, wes(dists(v,w)). For a cluster
S and a node v € S, Rad(v,S) is defined as maxyegs(dists(v, w)). The ra-
dius Rad(S) of a cluster is defined as min,¢g(Rad(v,S)). The radius of a cover
Rad(S) where 8§ = {51. 55, ...5,} is defined as max;e1. o, (Rad(S;)), the diam-
eter of a cover Diam(S) is defined as max;e1. m(Diarn(S;)). The volume of a
cover § = {57, 53,...5m } 1s defined as vol(S) = Zi=1 m|Si|. A cover T is said
to be a coarsening of a cover §, if for each cluster S; € §, there exists a cluster
1; € T such that S; C Tj.

In [14], the author presents an algorithm named GV (Global Volume) that,
given a cover S of a network graph and an integer parameter z > 1, constructs
a coarsening cover 7 that satisfies the following properties:

1 wol(T) < |V[1H1/2
2. Rad(7T) < z x Diam(8S) + Rad(S) < (2z + 1) x Rad(S).

In the sequel, we call the input cover clusters S-clusters, and the output cover
clusters 7-clusters. The GV algorithm operates iteratively. At each iteration, one
S-cluster Sy is selected, and a new cluster 7' € 7 is [ormed by merging Sy with
other S-clusters. The merging procedure itself is performed in iterations, where
in each iteration a new layer of S-clusters is selected and merged into T'. A formal
description of the algorithm is given in Table 1.

T —0
while S # 0 do

. Select an arbitrary cluster Sp € S
S—8—{S}; K5
Q—{55€S8. SNK #£0}
T—RKUlJg;§—~8-29
of T>|V|'?|K| then K « T; goto3
T —TU{T}

SOt oo

Table 1. Algorithm GV

The proof of correctness for GV is given in [14]. Here we provide a sketch of
this proof (for the proof of the Lemmas that appear in this section, see [14]):

Lemma 1. The resulting T s a cover of the network.

For each cluster 7" € 7, let K(1') denote the value of the set K when this cluster
is completely formed and joins the cover (line 6 in the algorithm).

Lemma 2. For every T €T, |T| < |V|"/?|K(T)|.
Lemma 3. For every T, 1" € T, K(T)NK(T') = 0.
Corollary 4. vol(T) < |V|'*!/2.

Now, consider some iteration of the main loop, starting with the selection of
a cluster Sy € § and ending with a new cluster 7" added to 7. Suppose that
the internal loop was executed for J iterations. Denote the initial set K by Kj
(= Sou). Denote the sets T"and K constructed at steps 4 and 5 of the i-th internal
iteration, ¢ > 1, by T; and K; respectively.

Lemma 5. For every 0 < i < J — 1, |K;| > |V|"/*, and strict inequality holds
fori>1.
Corollary 6. J < z.

Lemma 7. Rad(T) < Rad(S)+ z x Diam(8) < (22 4+ 1) x Rad(S).

3 Synchronizer 1,

The first synchronizer we present, 71, possesses exactly the same time and
communication complexities as synchronizer 4. The initialization phase of syn-
chronizer 7; uses the GV algorithm for creating a cover of the network, to
be used later by the synchronizer. The input cover given to GV is the cover
S ={51,5....,Sv|} such that S, is a cluster that contains node v and all its
neighbors. The parameter given to the GV algorithm is z = log; |V|, where k is
a parameter given at initialization time (2 < k < |V|). Therefore, the cover 7,
created by GV satisfies the following:

1. Rad(7T) < 2log, |V + 1, vol(T) < k|V|.

2. 7T is a coarsening of S.

All three predicates follow trivially from the properties of algorithm GV.

Observe that for every node v, there exists a cluster 7' € 7 such that v and
all its neighbors are in T". This derives from the fact that 7 is a coarsening of
S. which means that there exists a cluster T' € 7 such that S, CT.

After GV is performed, each node v € V' chooses the cluster that contains S,
(that was created by GV by combining S, and other S-clusters) to be its home
cluster. In the sequel, we call the group of nodes that have selected a cluster
T to be their home cluster as the tenanis of T'. In addition, a spanning tree of
height < 2log, |[V| 4+ 1 is constructed for each cluster '€ 7. Such a tree exists
for every cluster in 7 since Rad(7) < 2log, |V| + 1. In the sequel, the root of
the created spanning tree is referred to as the leader of the cluster.

Synchronizer 7y uses two types of messages: SAFE and AWAKE. Each mes-
sage includes a parameter containing a name of a cluster leader. Synchronizer

11 works as follows: after each pulse, SAFE messages are converged along each
cluster spanning-tree from the leaves to the root. Each leaf node sends a SAFE
message to its parent node as soon as it is safe. Each intermediate node sends
a SAFE message to its parent as soon as it is safe and has received a SAFE
message from each of its children in the cluster spanning-tree. When the cluster
leader receives a SAFE message from each of its children, it initiates a broadcast
of AWAKE messages: each node in the cluster sends an AWAKE message to
each of its children upon receiving an AWAKE message from its parent.

Each node in the network may be a member in more than one cluster
spanning-tree. Therefore, SAFE and AWAKE messages sent along each spanning-
tree contain the namec of the cluster leader. The above protocol is performed
independently at each cluster spanning-tree. A node that receives an AWAKE
message that includes the name of its home cluster leader, performs the next
pulse. The correctness of synchronizer 7y follows from the following arguments:

— All nodes in the network get to perform each pulse exactly once. This is due
to the fact that each node has selected exactly one home cluster.
Each node performs each pulse only after receiving all messages sent to it at
the former pulse: each node performs each pulse upon receiving an AWAKE
message from its parent in its home clusier, that is, only after all the nodes
in its home cluster arc safe. The nodes choose their home cluster such that
all neighbors of each node are members in its home cluster. Thus, a node
performs a pulse only after all its neighbors are safe with respect to the
former pulse.

The time complexity of 1, is as follows: the convergecast of SAFE messages
along each cluster spanning-tree takes 2log;, |V|+ 1 periods of time. The broad-
cast of AWAKE messages along the cluster spanning-trees takes 2log, |[V|+ 1
periods of time. This adds up to 4log, |V| + 2 per pulse. The communication
complexity of 7, is at most 2k|V|: the number of edges in all cluster spanning-
trees is bounded by the volume of the cover, which is k|V| at the most. One
SAFE and one AWAKE message is sent along each of these edges.

4 Synchronizer 7,

The time and communication complexities of synchronizer 77 are almost exactly
identical to those of synchronizer ~. In this section we present a synchronizer,
named 7z, that requires communication complexity of (k + 2)|V|, which is half
the communication complexity of 4 and ;. The time complexity of 1y is identical
to the time complexity of ~.

Synchronizer 75 is based on the observation that there is no point in broad-
casting the AWAKE messages to all nodes of each cluster, since nodes that are
not tenants of a cluster (the cluster is not their home cluster) do not perform
the pulse upon receiving the AWAKE message from their parent in this cluster.

The 1nitialization phase of synchronizer 1y creates two trees for each cluster:
(1) the cluster spanning-tree, over which the SAFE messages are converged. (2)
the cluster tenants-tree, over which the AWAKE messages are broadcast.

In the sequel we show that the number of edges in all cluster tenants-trees is
bounded by 2|V|, and that the height of each cluster tenants-tree is bounded by
2log;, |V|. Therefore, the communication complexity of 7, is k|V|42|V | messages
per pulse, and the time complexity of 7, is 4log, |[V| + 1.

Let us describe a version of GV that builds a cluster tenants-tree for each cre-
ated T-cluster. The algorithm works only for the input cover § = {51,55, ..., Sjy|}

where S, 18 a cluster that contains the node » and all its neighbors. The code of
the new version of GV is presented in Table 2.

T — 0
while S # 0 do
{ Constructing a new 7 -cluster named 7' }
1. Select an arbitrary cluster S, € §
2. §—=8—{S,}; K—=S,;T 5,
2a. Tenants(T) — {v}; leader(T) — v
3. Q—{S]SeS, SNK £10}
3a. For each S, € Q do
if Sy NTenants(T) # 0 then
parenty(w) < a node picked from S, N Tenants(T')
else
[— a node picked from S, N7’
parentp(w) — 1
pareniy(l) — a node picked from Sy N Tenants(T)

3b. Tenants(T) — Tenants(T) + {w|S, € Q}
4. T—KulJo:8—8-0Q

5. 4f T > |V|Y*|K| then K «—T;golo 3
6. T —TU{l}

Table 2. Algorithm GV with cluster tenants-trees construction

The correciness ol step 3a which actually constructs the cluster tenants-trees
follows from the fact that at all times, each node in T is either in Tenants(T)
or is a neighbor of a node that is in Tenants(T). From step 3b and 4, each node
is a tenant of exactly one cluster. From step 3a, each node contributes 2 edges
to its cluster tenants-tree at the most. Therefore, the number of edges in all
cluster-tenants is 2|V| at the most.

Each execution of step 3a increases the height of the cluster tenants-tree by
2 at the most. since it connects each of the new tenant nodes to an old one via 2
hops at the most. The height of the initial tenants tree created in step 2ais 0, and
step 3a is performed log;, |V times at the most per cluster, therefore the height
of each cluster tenants-tree is 2log; |V| at the most. The cluster spanning-tree,
of height 2log, |V| + 1 at the most. is created for each cluster T' by performing
a BFS algorithm, initiated by leader(T).

5 Synchronizer 6

The synchronizer presented in this section, §, requires communications complex-
ity of 2k|V| per pulse, the same as synchronizer 5. The time complexity of 4 is
2log, V]| + 2 per pulse, which is half the time complexity of 7.

Like with synchronizers 77 and 79, the initialization phase of synchronizer #
uses the GV algorithm in order to create a cover of the network needed for the
operation of the synchronizer. However, in this case the input cover given to the
GV algorithm is different. Tn A, the input cover given to the GV algorithm is
built of |E| clusters, where each two neighbors in the network form a cluster. In
other words, the input cover § is {5, ., |(v,w) € E'} where S, ,, is a cluster that
contains nodes v, w and the edge that connects them.

Observe that Diam(S) = Ruad(S) = 1. Therefore, the cover 7, created by
applying the GV algorithm on S, satisfies the following properties:

1. Rad(T) < log |V|+ L.
2. vol(T) < k|V|.

Synchronizer ¢ works similarly to 7;: it uses two types of messages, SAFE
and AWAKE. After each pulse, SAFE messages are converged along each cluster
spanning-tree in the same way as done in 7;. In each cluster, when the leader
receives SAFE messages from each of its children in the cluster spanning-tree, 1t
initiates a broadcast of AWAKE messages along the cluster spanning tree.

The difference between the protocols of 7, and € is in the timing of the pulse
at each node. In 8, each node performs the pulse only after receiving an AWAKE
message from its parent on each of the cluster spanning-trees it belongs to. For
example, a node that belongs to three clusters, waits to receive three AWAKE
messages before performing the next pulse.

As 1 7, and 72, the AWAKE and SAFE messages sent along the cluster
spanning tree edges when performing & contain the name of the cluster leader.
In this way, a node that belongs to more than one cluster can distinguish between
messages sent over different cluster spanning trees.

The correctness of synchronizer 8 follows from the following two arguments:

— All nodes in the network get to perform each pulse exactly once. This is

proved by induction on the pulse number n. The base is trivial: the cluster
leaders initiate a broadcast of AWAKE messages along the cluster spanning-
trees. Eventually, each node receives an AWAKE message [rom ils parent on
each of the cluster spanning-trees it belongs to and performs pulse(0).
The induction step is proved as follows: assume that each node gets to per-
form pulse(n) exactly once. Since the convergecast of SAFE messages is per-
formed independently over each cluster spanning-tree, each cluster leader
eventually receives a SAFE message from each of its children and initiates a
broadcast of AWAKE messages on its cluster spanning-tree. Thus, each node
eventually receives AWAKE from its parent on each of the cluster spanning-
trees it belongs to. When this happens, the node performs pulse(n + 1).

— Each node performs each pulse only after receiving all messages sent to it at
the former pulse. This argument is proved as follows: assume, in contradic-
tion, that when a node v performs pulse(n + 1), an original-protocol message
sent to v from a neighbor w at pulse(n) is still on its way. Since the cover 7
is a coarsening of &, there exists a cluster 7' € 7 such that S, ,, C 7. Syn-
chronizer # ensures that node v performs pulse(n+1) only after receiving an
AWAKE message from its parent in the spanning tree of 7". Therefore, when
v performs pulse(n + 1), all nodes in T' are already safe, including w. This
is in contradiction to the assumption that there is still an original-protocol
message sent at pulse(n) on its way from w to ©.

The time complexity of # is as follows: the convergecast of SAFE messages
along each cluster spanning-tree takes log, |V'|+1 periods of time. The broadcast
of AWAKE messages along the cluster spanning-trees takes log, |V|+ 1 periods
of time. This adds up to a time complexity of 2log, |V| + 2 per pulse. The
communication complexity of € is at most 2k|V|: the number of edges in all
cluster spanning-trees is bounded by the volume of the cover, which is k|V] at
the most. One SAFE and one AWAKE message 1s sent along each of these edges.

6 A Distributed Version of Algorithm GV

In this section we describe a distributed version of the GV algorithm, that 1s used
in order to initialize the 07, ns and # synchronizers. For clarity reasons, we have
tried to keep this implementation as close as possible to the partition algorithm
used in order to initiate synchronizer 4. The time complexity of the distributed
GV algorithm presented in this section is O(|V]log|V|), the same as the time
complexity of the partition algorithm used in order to initialize synchronizer 7.
The communication complexity of this distributed GV algorithmis O(|V|?). This
is k times better than the communication complexity of the partition algorithm
of 7, which is O(k|V]?). The reason lor the reduced communication complexily
is that there is no need to elect preferred links.

The initialization required by the distributed GV algorithm is as follows:
a leader is selected for each S-cluster. In addition, a spanning tree is created
for each S-cluster, by using a BFS algorithm initiated by its leader. We call
these leader nodes and spanning trees ‘S-leader nodes’ and ‘S-spanning trees’,
as opposed to the 7-leader nodes and the 7-spanning trees created by GV.

When initializing 71 and s, § = {S1,52,...,5v|}, where S, is a cluster
that contains v and all its neighbors. In this case, the S-leader of S, is v, and
the S-spanning tree of S, is rooted by » and contains the edges {(v, w)|w is a
neighbor of v}. When initializing 0, § = {s, «|(v,w) € E}. In this case, the
S-leader of a cluster S, ,, is selected arbitrarily from {v,w}. The S-spanning
tree is built of the edge (v, w).

The algorithm starts with an execution of a leader election algorithm [11],
[2]. The election of an S-leader and the creation of an S-spanning tree for each
S-cluster can be performed by this algorithm without any penalty in commu-
nication or time complexities. This stage is also used in order to create at each

node v a list @) List, that contains the names of the S-leaders of all S-clusters v
belongs to. Again, this is performed without penalty in communication or time.

In the distributed GV algorithm, 7-clusters are built one by one. Each time,
a new 7-cluster is built from remaining S-clusters (S-clusters which were not
merged into previously created clusters). This is done by selecting a 7 -leader
node and then creating the 7-cluster from S-clusters in its neighborhood. The
operation of removing an S-cluster from the remaining S-clusters list (after it
had been used when building a 7-cluster) is performed by removing the name
of the S-cluster leader from @) List, for each node v in this S-cluster.

The algorithm makes sure that the selected 7-leader node is always a node
that is a leader of some S-cluster. The job of creating a 7-cluster 7" around
a given 7-leader node v is performed by a procedure named Cluster_Creation,
which operates in the following way: first, an S-cluster that is leaded by node
v 18 selected. At the first iteration, T contains this S-cluster, and the spanning
tree of T 1is selected to be the spanning tree of this S-cluster.

Each of the following iferations of the Cluster_Creation procedure is per-
formed as follows: the leader of 7' initiates a broadcast of PULSE messages
along the spanning tree of 7. Each node v that receives the PULSE message,
checks @ List,. If QList, is not empty, all S-clusters whose leader names appear
in @) List, arc merged into T'. This 1s done by sending LAYER messages along
the S-spanning trees of the S-clusters. The LAYER messages contain the name
of the S-cluster along which they are sent.

A node w that is not in 7" and receives a LAYER(S) message, joins 7'
Assuming this LAYER(SS) message is sent from a neighbor u, w marks u as its
parent in the spanning tree of 7. Node w also removes S from () List,,, sends
LAYER(S) messages further along the spanning tree of S, waits for an ACKg(.S)
or an ACK;(S) message as an acknowledgement for each of the LAYER(S)
messages it has sent, and then sends back an ACK;(S5) message, meaning that
u 18 the parent of w in the spanning tree of T'.

A node w that is in 7" and receives a LAYER(SS) message, checks whether
the name of the leader of S is in QList, . Tf not, the LAYER(S) message is
immediately acknowledged with an ACKy(S) message. If S appears in QList,,,
S is removed from QList,, LAYER(S) messages are sent further along the
spanning tree of S and w waits for ACK(.S) or ACK;(S) as an acknowledgement
for each LAYER(S) message it has sent. Then w sends back ACKg(\S).

Each node that has sent LAYER messages upon receiving a PULSE message,
waits to receive ACK for each LAYER message it has sent. and then sends a
COUNT message to its parent in the spanning tree of 7". The COUN'T messages
are converged along the spanning tree of 7. The COUNT message sent by each
node contains a parameter which is the number of the nodes in the subtree
rooted by if, the same is true for ACK; messages as well. When the leader of
T rcceives COUNT messages from cach of its children, it decides whether to
initiate another iteration or to initiate a search for another 7-cluster leader.

This concludes the description of the Cluster_Creation procedure process. We
now describe the way in which the GV algorithm uses this procedure in order

to create the cover 7.

Recall that the distributed GV algorithm begins with an execution of a leader
election algorithm. The leader election algorithm [11], [2] ends at an elected
‘core’ edge. At least one of the nodes at the two ends of this edge must be
a leader of an S-cluster. We will call this node vi,;;. Node v;,;¢ 1nitiates an
execution of the Cluster_Creation procedure. The procedure execution ends at
node ;4. after creating a 7-cluster led by it. At this point, node v;,;: calls the
Search_For_Leader procedure, which searches for a node that will be a leader of
a new 7 -cluster. This node calls Cluster_Creation which creates a cluster around

it, then 1t calls Search_For_Leader, and so on.

The Search_For_Leader procedure works as follows: it is initiated by the leader
of a T-cluster T" that has just been formed. This leader node initiates a broadcast
ol TEST messages along the cluster spanning-tree. Then, a convergecast process
of CANDIDATE messages is performed, where each node sends to its parent a
message telling whether one of the nodes in its sub-tree is a member of an &-
cluster that has not yet been joined to a 7-cluster. If such a node is found, the
new 7 -cluster leader will be the leader of the S-cluster found. If not, the center
of activity backtracks to the cluster from which the leader of T" was elected, and
the above procedure is repeated there. In the sequel, we denote the cluster from
which the leader of a 7-cluster T" was elected as the parent cluster of T'. Notice
that the parent-child relation between the clusters creates a DFS tree.

The time complexity of the leader election algorithm in [11] is O(|V]log |V).
The time complexity of the leader election algorithm in [2] O(]V]). The commu-
nication complexity is O(|V|log |V| + |E]) in both cases.

The Cluster_Creation procedure creates clusters of height O(log;, |V|) at the
most. Therefore, at most O(log, |[V]) iterations are needed in order to create
cach cluster. In cach 7-cluster 7', PULSE and COUNT mcssages arc sent only
by nodes in K(7") (See Sec. 2). Recall that Ype7 K(1') < |V|. This means that
at most |V/]log, |V| PULSE and COUNT messages are sent during the whole
algorithm execution. The number of LAYER and ACK messages sent along each
edge in each direction equals to the number of S-cluster spanning-trees to which
this edge belongs. When initializing 7; or 72, each edge belongs to exactly two
S-cluster spanning trees. When initializing . each edge belongs to exactly one
S-cluster spanning tree. Therefore, O(|E|) LAYER and ACK messages are sent
during the whole algorithm execution. Thus, the communication complexity of
the Cluster_Creation procedure is O(|V |log, |V |+ |E]).

Now, consider a 7-cluster with ¢ nodes, the height of this cluster spanning
tree is at most O(log;, ¢). Hence, the total amount of time spent in forming this
cluster is O(clogy, ¢). Summing up for all 7-clusters gives O(|V|log, |V|) the
overall time complexily ol the invocations of Cluster_Crealion.

The Search_For_Leader procedure traverses the already created clusters in
a DFS order, trying to find a free node which would be the leader node of a
new cluster. Each time a cluster is traversed in search for a new candidate is
referred to as a move (see [1]). A move involves a broadcast of TEST mes-
sages and a convergecast of CANDIDATE messages. It also involves a string of

LEADER messages from the cluster leader to the elected new node; or a string
of RETREAT messages to the leader of the cluster that has elected the current
leader (its parent in the clusters DFS tree). Thus, for both kind of clusters,
Cmove = O(|V]) and Thyone = O(log; |V]).

Observe that each node » may be a leader of at most one 7 -cluster. This
is due to the fact that the Cluster_Creation procedure initiated by a node v
performs at least one iteration per cluster, ensuring that) List, is empty. Each
cluster contributes two mowves to the execution of the algorithm, one is when the
leader of the cluster is elected, and one is when the cluster is traversed and no new
leader is found. There are at most O(|V]) clusters in the network and therefore
the total communication complexity of all invocations of Scarch_For_Leader is
O(|V]?), and the total time complexity is O(|V|log, |V]).

The total communication complexity of the distributed GV algorithm is,
thus, O(|V|?). The total time complexity of the distributed GV algorithm is
O(|V]log; |V]). The process of creating the cluster-tenants tree needed by syn-
chronizer 75 adds 2|V| to the communication and time complexities of the dis-
tributed GV. This is straightforward from the scheme in Table 2.

6.1 An Improved Distributed Version of the GV Algorithm

Since the Preferred_Link_Election procedure used in the partition algorithm of v
is not needed by the distributed GV algorithm, the communication complexity
of the Search_For Leader procedure, which is O(|V]?) turns out to be dominant.
The reason for the large communication complexity of the Search_For_Leader
procedure is that a cluster with O(]V]) nodes may execute a move of the
Search_For_Leader procedure O(|V]) times.

This section presents a distributed GV algorithm with communication com-
plexity O(|V|log|V|+ |F]) and time complexity O(|V|log; [V]). The improve-
ment in communication complexity is achieved by reducing the communication
complexity ol each move of the Search_For_Leader procedure to O(log; [V]).

The idea is to let the Cluster_Creation procedure maintain a data structure
by which the leader of each 7-cluster can decide whether there are nodes in
this 7-cluster that are members of remaining S-clusters, and also tells which
is the way from that leader to such a node (if exists). Tn the sequel, we name
such nodes ‘potential nodes’. With such a data structure, it is obvious that every
move of the Search_For_Leader procedure takes O(log;, |V|) messages.

In order to create this data structure, each node in the network selects an
inspector cluster, which will be the cluster that is responsible to check whether
this node is a potential node or not. The inspector cluster of a node # is the
first 7-cluster to which node v joins during the execution of the distributed GV
algorithm. The nodes that have selected a cluster 7' to be their inspector are
named the ‘subordinates’ of T'.

Each node v maintains one flag f, 7 for each cluster T it participates in. The
flag f, 7 says whether there is a potential node that is a subordinate of 7 in
the sub-tree of the spanning tree of T, rooted by v. After the execution of the
Cluster_Creation procedure that creates a 7 -cluster 7', an additional iteration

of broadcast and convergecast of messages along the created cluster spanning
tree is performed. During this iteration the values of f, 7 are set for all nodes
v € T. Observe that this additional iteration does not change the order of time
or communication complexity of the Cluster_Creation procedure.

The new Cluster_Creation procedure works as follows: like in the old Clus-
ter_Creation procedure, when an S-cluster S joins the created 7-cluster 7', the
nodes in S remove the name of the leader of S from their () .2st variable. In the
new Cluster_Creation procedure, when a node w sets QList,, «— 0, it checks to
see whether this effects the value of its f,, 7+ flag, where 7" is its inspector clus-
ter. If not, the Cluster_Creation procedure continues. If f, 7/ has been changed,
node w sends a FLAG_.CHANGED(T") message to its parent u in the spanning
tree of 7" and waits for a FLAG_.CHANGED_ACK(7") message from u. When
node u receives the FLAG_CHANGED(T") message from w, it updates f, 7:(w),
which is a variable that contains the estimation at u for the value of f, 7. Then
node u checks whether the value of f, 7/ should be changed. Tf not, u sends
a FLAG_.CHANGED_ACK(T") message to w. If f, 7/ should be changed, node
u changes it and sends a FLAG_.CHANGED(7") message to its parent in the
spanning tree of 77 and so on.

When performing Search_For_Leader, each move starts at a leader node [of
a T-cluster 1'. Node { checks f; 7 to see whether there are potential nodes that
are subordinates of T'. If this is the case, the f, r(w) flags will lead from [to a
potential node using O(logy, |V|) messages. If not, RETREAT messages are sent
to the leader of the cluster that has selected /, this costs O(log, |V|) messages
at the most.

Each node v performs QList, «— { exactly once during the whole execu-
tion of the GV algorithm, causing a string of O(log; |V|) FLAG_.CHANGED
messages at the most and O(log, |V|) FLAG_.CHANGED_ACK messages at the
most. Therefore, we have added O(|V|log;, |V|) messages to the communication
complexity of the Cluster_Creation procedure, and the same amount to its time
complexity. Hence, the communication complexity of the improved distributed
GV algorithm is O(|V]log |V |+ |E]|) and its time complexity is O(|V]log; |V]).

6.2 Other Known Distributed Cover-Construction Algorithms

Two types of cover construction algorithms are discussed in the literature: (1)
algorithms that construct covers while minimizing their global volume (for ex-
ample, the GV algorithm). (2) algorithms that construct covers while minimizing
the maximum node degree, which is the maximum over the nodes of the number
of clusters in which a node participates.

Algorithms of the second type are discussed in [14]. [6], [7]. [12], [&]. [3].
Given a parameter z and a cover &, these algorithms construct a coarsening
cover T that satisfies the following properties: the maximumnode degree deg(7)
is O(z|V['%), vol(T) = O(z|V|'"tY/?), Rad(T) = O(z x Rad(S)). Setting z =
log; |V, we gain: vol(7) = O(k|V|log;, |V]), Rad(T) = O(log; |V | x Rad(S)).

Observe that the volume of the created cover 7 is O(logy |V]) times the
volume of the cover constructed when using the GV algorithm, and that there is

no tradeoff between the radius of the created clusters and the volume of the cover.
Therefore, using one of these cover construction algorithms in order to initiate
N1, N2 or B, would cause the communication complexity of the synchronizer to be
O(log; |V]) times larger than that of v, and would eliminate the tradeoff between
the synchronizer time and communication complexities.

Thus, only cover construction algorithms of type (1) are useful for our pur-
pose. A distributed synchronous algorithm of this type is presented in [7]. How-
ever, the algorithm presented in Sec. 6.1 is better suited for our purpose than
the algorithm presented in [7] since it creates clusters of smaller radius and since
it has lower communication complexity.

7 Coping with Apparent Shortcomings

The bit complexity of a distributed protocol is defined as the worst case total
number of bits in all messages sent by the nodes in V during an execution of
the protocol. The bit complexity per pulse of 51, 72 and 0 is larger than the
bit complexity per pulse of v. This is due to the fact that the AWAKE and
SAFE messages sent along each cluster spanning tree when executing 7, 72
and @ contain the identity of the cluster leader, that occupies log|V/| bits. The
messages sent by the synchronization protocol of 5y are all O(1) in length.

Usually when computing the communication complexity of a distributed pro-
tocol, messages that are O(log;, |V|) bits long are assumed to cost exactly the
same as messages that are O(1) bits long. This is reasonable since even for very
large networks, log |V| bits are much less than the number of bits appended to
each message as a data-link control header, CRC, etc.

However, it is casy to change the synchronization protocols of 7, s and 6
to send only messages that are O(1) bits long: observe that the distributed GV
algorithm described in Sec. 6 ensures that the edges that form the spanning tree
of a T-cluster 7" are all edges of the spanning trees of the S-clusters that form
T. The GV algorithm also ensures that an S-cluster that is used when building
a T-cluster T 1s not used when building any other 7-cluster. When initializing
. each edge is a member of exactly one S-cluster. Thus, each edge is a member
of at most one 7-cluster spanning tree. Therefore, there is no need to send any
kind of information in the AWAKE and SAFE messages: the 7-cluster to which
each such message applies can be extracted at the receiving node from the edge
from which the message was received.

When initializing 11 or 12, each edge belongs to at most two S-cluster span-
ning trees, and therefore, to at most two 7 -cluster spanning trees. Thus, one
bit of information i1s cnough for distinguishing between messages that apply to
different 7 -clusters.

The amount of memory needed by the synchronization protocols of 7y, 72
and @ at each node depends on the number of links connected to the node. At a
node with d links, this amount of memory is O(dlog|V]), as O(log|V]) bits are
needed to store the names of the (at most two) 7-cluster spanning trees each
edge participates in. This is larger than the O(d) amount of memory needed for

the synchronization protocol of y at a similar node. However, O(log|V]) bits
per link is still considered as a reasonable amount of memory. This amount of
memory is much less than the amount of memory needed anyway in order to
ensure correct simulation of the synchronous model (see [13], [16], [17], [18], [19]).

8

Acknowledgments

The authors wish to thank Hagit Attiya for helpful discussions.

References

1.

11.

12.

13.

14.
15.

16.

17.

18.

19.

B. Awerbuch, Complexity Of Network Synchronization, Jonrnal of the Association
for Computing Machinery, Vol. 32, No. 4, October 1985, pp. 804-823.

. B. Awerbuch, Optimal Distributed Algorithms of Minimum Weight Spanning Tree,

Counting, Leader Election and Related Problems, STOC 1987, pp. 230-240.

. B. Awerbuch, B. Berger, I.. Cowen and D. Peleg, Fast Network Decomposition,

PODC 1992.

. 1. Althofer, G. Das, D. Dobkin and D. Joseph, Generating sparse spanners for

werghted graphs, 2nd Scandinavian Workshop on Algorithm Theory 1990, 26-37.

. B. Awerbuch and D. Peleg, Network Synchronization with Polylogarithmic Over-

head, 31st Symposium on Foundations of Computer Science 1990, pp. 514-522.

. B. Awerbuch and D. Peleg, Sparse Partitions, 31st FOCS, 1990.
. B. Awerbuch and D. Peleg, FEfficient Distributed Construction of Sparse Covers,

CS90-17, The Weizmann Institute, July 1990.

. B. Awerbuch, B. Patt-Shamir, D. Peleg and M. Saks, Adapling lo Asynchronous

Dynamic Networks, Proc. 24th ACM STOC, 1992, pages 557-570.

. D. Peleg and A. Schaffer, Graph Spanners, J. of Graph Theory 13, 1989, 99-116.
. C.T. Chou, I. Cidon, 1.S. Gopal and S. Zaks. Synchronizing Asynchronous Bounded

Delay Networks, IEEE Transactions on communications, Vol. 38, No. 2, February
1990, 144-147.

R. G. Gallager, P. A. Humblet and P. M. Spira, A Dustributed Algorithm for
Minimum- Weight Spanning Trees, ACM Transactions on Programming Languages
and Systems 5, 1983, 66-77.

N. TLinial and M. Saks, Decomposing Graphs into Regions of Small Diameter,
ACM/SIAM symp. on Discrete Algorithms, 1991 pages 320-330.

K.B. Lakshmanan and K. Thulasiraman, On The Use Of Synchronizers For Asyn-
chronous Communication Networks, 2nd WDAG, Amsterdam, July 1987.

D. Peleg, Sparse Graph Partitions, CS89-01, The Weizmann Institute, Feb. 1989.
D. Peleg and J.D. Ullman, An Optimal Synchronizer for the Hypercube, SIAM
Journal on computing, Vol 18, No. 4, pp. 740-747, August 1989.

L. Shabtay and A. Segall, Active and Passive Synchronizers, TR-706, December
1991, Compnter Science Department, Technion TIT, snbmitted to NETWORKS.

L. Shabtay and A. Scgall, Mcssage Dclaying Synchronizers, 5th WDAG, Dclphi,
October 1991.

I.. Shabtay and A. Segall, A Synchronizer with Low Memory Overhead, 14th Tn-
ternational Conference on Distributed Computing Systems, Poznan pp. 250-257.

L. Shabtay and A. Segall, On the Memory Overhead of Synchronizers, LPCR Re-
port #9313, May 1993, Computer Science Department, Technion IIT.

Technion - Computer Science Department - Technical Report LPCR9410 - 1994

a[£18 GHNTT MM a8eped omeur YTy a1y Susn passonord sem apIIR SIYT,

